Modeling subdiffusive light scattering by incorporating the tissue phase function and detector numerical aperture.

نویسندگان

  • Anouk L Post
  • Steven L Jacques
  • Henricus J C M Sterenborg
  • Dirk J Faber
  • Ton G van Leeuwen
چکیده

To detect small-scale changes in tissue with optical techniques, small sampling volumes and, therefore, short source–detector separations are required. In this case, reflectance measurements are not adequately described by the diffusion approximation. Previous studies related subdiffusive reflectance to ? or ? , which parameterize the phase function. Recently, it was demonstrated that ? predicts subdiffusive reflectance better than ? , and that ? becomes less predictive for lower numerical apertures (NAs). We derive and evaluate the parameter R p NA , which incorporates the NA of the detector and the integral of the phase function over the NA in the backward and forward directions. Monte Carlo simulations are performed for overlapping source/detector geometries for a range of phase functions, reduced scattering coefficients, NAs, and source/detector diameters. R p NA improves prediction of the measured reflectance compared to ? and ? . It is, therefore, expected that R p NA will improve derivation of optical properties from subdiffusive measurements.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Diagnosis of the phase function of random media from light reflectance

Light reflectance has been widely used to diagnose random media in both in situ and in vivo applications. The quantification of the phase function of the medium from reflectance measurements, however, remains elusive due to the lack of an explicit connection between the light reflectance profile and the phase function. Here we first present an analytical model for reflectance of scattered light...

متن کامل

Influence of the scattering phase function on light transport measurements in turbid media performed with small source-detector separations.

Many methods of optical tissue diagnosis require that measurements be performed with small source-detector separations in a backscatter geometry. Monte Carlo simulations are used to demonstrate that for these situations light transport depends on the exact form of the angular scattering probability distribution, P(theta). Simulations performed with different forms of P(theta) with the same valu...

متن کامل

Quantitative Comparison of Analytical solution and Finite Element Method for investigation of Near-Infrared Light Propagation in Brain Tissue Model

Introduction: Functional Near-Infrared Spectroscopy (fNIRS) is an imaging method in which light source and detector are installed on the head; consequently, re-emission of light from human skin contains information about cerebral hemodynamic alteration. The spatial probability distribution profile of photons penetrating tissue at a source spot, scattering into the tissue, and being released at ...

متن کامل

Engineering of core/shell nanoparticles surface plasmon for increasing of light penetration depth in tissue (modeling and analysis)

Objectives: In this article, a new procedure for increasing the light penetration depth in a tissue is studied and simulated. It has been reported that the most important problem in biomedical optical imaging relates to the light penetration depth, and so this makes a dramatic restriction on its applications. In the optical imaging method, the detection of the backscattered pho...

متن کامل

Quantum modeling of light absorption in graphene based photo-transistors

Graphene based optical devices are highly recommended and interested for integrated optical circuits. As a main component of an optical link, a photodetector based on graphene nano-ribbons is proposed and studied. A quantum transport model is presented for simulation of a graphene nano-ribbon (GNR) -based photo-transistor based on non-equilibrium Green’s function method. In the proposed model a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of biomedical optics

دوره 22 5  شماره 

صفحات  -

تاریخ انتشار 2017